Modelling and Identification of Robots with Both Joint and Drive Flexibilities
نویسندگان
چکیده
Modelling and identification of flexible-joint robots is required for dynamic simulation and model based control of industrial robots. A nonlinear finite element based method is used to derive the dynamic equations of motion in a form suitable for both simulation and identification. The latter requires that the equations of motion are linear in the dynamic parameters. For accurate simulations of the robot tip motion, the model should describe the relevant dynamic properties such as joint friction and flexibilities. Both the drive and the joint flexibilities are included in the model. Joint friction is described by means of a static friction model, including Coulomb and viscous friction components. The dynamic parameters describing mass, inertia, stiffness, damping and friction properties are obtained from a least squares solution of an over determined linear system assembled from closed loop identification experiments. In the identification experiment, the robot moves along a prescribed trajectory while all joint angles, flexible deformations and driving torques are recorded. To excite joint vibrations during the identification feed forward torques at frequencies above the bandwidth of the control system are superposed on the joint torques. The applicability of the method is demonstrated in a numerical study of a four-link industrial robot.
منابع مشابه
Robust adaptive control of voltage saturated flexible joint robots with experimental evaluations
This paper is concerned with the problem of design and implementation a robust adaptive control strategy for flexible joint electrically driven robots (FJEDR), while considering to the constraints on the actuator voltage input. The control design procedure is based on function approximation technique, to avoid saturation besides being robust against both structured and unstructured uncertaintie...
متن کاملRobust Fractional-order Control of Flexible-Joint Electrically Driven Robots
This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...
متن کاملExperimental Analysis for Measuring Errors in Wheeled Mobile Robots (RESEARCH NOTE)
This paper presents experimental analysis of wheeled mobile robots. Mathematical modelling of the mobile robot is presented. The mobile robots consist of an omni-directional and three differential drive mobile robots are tested and moved in given trajectories and the systematic errors of the robots are determined. A new method for omni-direction mobile robot was introduced in which the robot wa...
متن کاملRobust Fractional-order Control of Flexible-Joint Electrically Driven Robots
This paper presents a novel robust fractional PIλ controller design for flexible joint electrically driven robots. Because of using voltage control strategy, the proposed approach is free of problems arising from torque control strategy in the design and implementation. In fact, the motor's current includes the effects of nonlinearities and coupling in the robot manipulator. Therefore, cancella...
متن کاملControl of Wheeled Mobile Manipulators with Flexible Suspension Considering Wheels Slip Effects
Wheeled mobile manipulators utilize both the locomotion capabilities of the wheeled platform and manipulation capacity of the arm. While the modelling and control of such systems have previously been studied, most of them have considered robots with rigid suspension and their wheels are subject to pure rolling conditions. To relax the aforementioned limiting assumptions, this research addresses...
متن کامل